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Understanding the structure and reactivity of carbenium ions has
been critical in the development of many areas of organic chemistry.
Given the long-standing interest in the fundamental differences and
similarities between carbon and its heavier congeners, cationic
compounds of the heavier group 14 elements, particularly, in the
condensed phase, have also been the subject of intense research
and much controversy.1 The nature of the interaction between the
cation and the counterion and/or neutral ligands has been at the
center of the debate.1 Until now, only heavier monocationic group
14 species (Ge, Sn, Pb) have been successfully isolated and
characterized; more highly charged species are unknown, although
they, too, hold much potential as useful compounds.1c

In the case of germanium, four types of cationic compounds have
been unambiguously characterized (Chart 1): TypeA relies on the
steric protection and the electronic effects of the substituents for
stabilization,1 whereas typesB2 and C3 utilize neutral donors to
occupy vacant coordination sites on germanium. TypeD4 also
contains a neutral donor. Since germanium is in the 2+ oxidation
state, the lone pair of electrons provides additional shielding from
potential nucleophiles. Undoubtedly, in TypesB, C, and D, the
charge is delocalized to some extent onto the donor molecules. In
this context, we now report on a new class of group 14 centered
cations with a unique bonding arrangement in p-block chemistry:
a dicationic complex with a central germanium atom coordinated
by three N-heterocyclic carbene (NHC) ligands (Chart 2, TypeE).5

Recently, we have shown that an NHC can stabilize an otherwise
transient diorganogermylene by complexation.6 The strong donor
ability of NHCs should enable the synthesis and isolation of other
novel germanium(II) species,7 and thus, we explored the synthesis
and reactivity of carbene-dihalogermylene complexes.7b

The addition of a stoichiometric amount of carbene1 to GeCl2‚
dioxane produced2 in high yield. Our initial attempt to displace
the chlorines with excess1 was not successful, and thus, the
chlorines were replaced with iodines via halogen exchange using
Me3SiI to afford 3 (Scheme 1).8 Upon addition of excess1 to a
yellow THF solution of3, the color of the solution quickly faded
and a white precipitate formed. Colorless crystals were grown by
diffusion of diethyl ether into a saturated pyridine solution of the
bulk powder and were analyzed by single-crystal X-ray diffraction.
The structure was determined to be the diiodide salt of42+ in which
three crystallographically identical carbenes are bonded to the
germanium center forming a pyramidalC3 propeller consistent with
an AX3E9 configuration (Figure 1).10 The pyramidal geometry at
germanium, the carbenic C-Ge bond length of 2.070(6) Å, which
is slightly longer than an average C-Ge single bond (range 1.90-
2.05 Å),11 and the lack of color suggests that back-bonding from
the germanium lone pair to the carbenes is absent in42+.12

The two iodide anions in the asymmetric unit show no significant
bonding interaction with the germanium of42+. The closest
approach of the iodides is 3.11 Å from a methyl hydrogen, which
is barely within the sum of the van der Waals radii (3.18 Å).13

Iodide is usually considered a nucleophilic anion; exclusion of

iodide from germanium (the closest Ge-I approach is 5.96 Å) can
be attributed to steric protection from the carbenes and the
stereochemically active lone pair of electrons. A disordered pyridine
solvate is also present in the unit cell but is distant from the
germanium with the closest approach being 3.78 Å.

As expected, the FT Raman spectrum of the bulk powder of42+

2I- lacked a signal attributable to a germanium-iodine covalent
bond which was clearly evident in the FT Raman spectrum of3
(205 cm-1). The 1H NMR spectrum of42+ is rather complex at
room temperature, showing multiple broad signals which, at 90°C,
simplify into resonances consistent with one type of carbene moiety.
The 1H NMR spectrum of a solution containing both1 and42+ at
room temperature shows sharp peaks attributable to free carbene1
superimposed on the signals of42+, suggesting that ligand exchange
is not responsible for the broadening of the1H NMR signals of
42+. At -20 °C, the 1H NMR spectrum of42+ revealed signals
attributable to two nonequivalent isopropyl methyne1H’s, four
isopropyl methyl groups, and two backbone methyl groups which
is consistent with theC3 symmetry of42+ in the solid state (Figure
1).8 Therefore, we can conclude that hindered rotation is the most
likely explanation for the complex1H NMR spectrum of42+

observed at room temperature.
Electronic structure calculations14 reveal that the HOMO of42+

is the lone electron pair on germanium, which is consistent with a

Chart 1. Cations of Germanium, D ) Neutral Donor

Chart 2. Representations of a Ge-Centered Dication

Scheme 1
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Ge(II) species, while the LUMO is a pair of degenerateπ* orbitals
localized on the carbenes (Figure 2). In agreement with experimental
observations, the lone pair of electrons on germanium shows no
tendency forπ bonding with the carbenes.

Two opposite interpretations of the bonding for42+ are possible.
In 42+, the germanium can be considered dicationic with three
neutral ligands (Chart 2,EI) or anionic with each ligand adopting
a charge of+1 (Chart 2,EII ). To determine which Lewis structure
describes the electronic structure of42+ more accurately, the atomic
charge on germanium was calculated using three population analysis
schemes. The Mulliken charge on Ge is+0.05, natural population
analysis15 gives a charge of+0.64, and the atomic polar tensor16

scheme predicts a charge of+1.02.17 Since none of these charges
are close to+2.0 or-1.0, the true nature of42+ must be somewhere
between the two extremes (EI andEII ).18

In summary, we have reported the relatively straightforward
synthesis of42+, a germanium-centered dication. Spectroscopic
evidence of the new complex is consistent with a discrete cation
anion pair despite the dicationic charge and the presence of the
relatively nucleophilic iodide anions. The combination of a metal-
centered lone pair of electrons and a large positive charge make
this complex unique in group 14 chemistry and an important
contribution to known p-block-centered dications.19 The ease of
synthesis for42+ should make it a useful reagent for the synthesis
of many germanium-containing compounds;20 we are actively
exploring its reactivity and synthetic utility.
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Figure 1. Thermal ellipsoid plot (30% probability surface) of42+. Hydrogen
atoms are omitted for clarity. Selected bond lengths (Å) and angles (°):
C(1)-Ge ) 2.070(6), N(2)-C(1) ) 1.319(9), N(5)-C(1) ) 1.358(9),
N(2)-C(1)-N(5) ) 106.5(6), C(1)-Ge-C(1A) ) 103.1(2).

Figure 2. The HOMO and one of the degenerate LUMOs at an isosurface
value of 0.075 for42+. For clarity, the methyl groups and hydrogen atoms
are not shown.
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